GaInN/GaN heterostructures in the cubic lattice variant have the potential to overcome the limitations of wurtzite structures as commonly used for light emitting and laser diodes. Wurtzite GaInN (0001), suffers from large internal polarization fields, which force design compromises toward ultranarrow quantum wells and reduce recombination volume and efficiency, particularly in the green, yellow, and red visible spectral regions. Cubic GaInN microstripes on micropatterned Si(001), with {111} V-grooves oriented along Si , offer a system free of internal polarization fields, wider quantum wells, and a smaller bandgap energy. 6 and 9 nm Ga1-xInxN/GaN single quantum well structures are prepared and their emission spectra found to be dominated by the recombination in the cubic wells. The peak wavelength ranges from 520 to 570 nm with a polarization predominately perpendicular to the grooves. These values are about 26 nm longer in wavelength than the equivalent wurtzite sample portions and 40 nm longer than the wurtzite (0001) oriented portions. An alloy composition range of 0.2
Green emitting cubic GaInN/GaN quantum well stripes on micropatterned Si(001) and their strain analysis
Resource category