Searching for new plasmonic building blocks which offer tunability and design flexibility beyond noble metals is crucial for advancing the field of plasmonics. Herein, we report that solution-synthesized hexagonal Bi2Te3 nanoplates, in the absence of grating configurations, can exhibit multiple plasmon modes covering the entire visible range, as observed by transmission electron microscopy (TEM)-based electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) spectroscopy. Moreover, different plasmon modes are observed in the center and edge of the single Bi2Te3 nanoplate and a breathing mode is discovered for the first time in a non-noble metal. Theoretical calculations show that the plasmons observed in the visible range are mainly due to strong spin–orbit coupling induced metallic surface states of Bi2Te3. The versatility of shape- and size-engineered Bi2Te3 nanocrystals suggests exciting possibilities in plasmonics-enabled technology.
Visible surface plasmon modes in single Bi2Te3 nanoplate
Resource category